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Abstract

This paper investigates various types of multi-stage decoding for multi-level modulation

codes. It is shown that if the componenet codes of a multi-level modulation code and

types of decoding at various stages are chosen properly, high spectral efficiency and large

coding gain can be achieved with reduced decoding complexity. Particularly, it is shown that

the difference in performance between the suboptimum multi-stage soft-decision maximum

likelihood decoding of a modulation code and the single-stage optimum soft-decision decoding

of the code is very small, only a fraction of dB loss in SNR at BER of 10 -6.

1. Introduction

Coded modulation is a technique of combining coding and bandwidth efficient modula-

tion to produce modulation (or signal space) codes for achieving reliable data transmission

without compromising bandwidth efficiency [1-4]. Over the last eight years, a great deal of

research effort has been expended in constructing good bandwidth efficient modulation codes.

Among all the proposed methods for constructing modulation codes, the most powerful one

is the multi-level construction method [2,3,5-9]. This method allows us to construct modu-

1This research was supported by NASA Grant NAG 5-931
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lation codessystematicallywith arbitrarily large minimum squared Euclidean distance
from Hammingdistancecomponentcodes(binary or nonbinary, block or convolutional)
in conjunction with proper bits-to-signal mapping through signal set partitioning. If
the componentcodes are chosenproperly, the resultant multi-level modulation code not
only hasgood minimum squaredEuclideandistancebut is also rich in structural properties
suchas: regularity, linear structure, phase symmetry and trellis structure. These

structural properties simplify the error performanceanalysis, encoding and decodingim-
plementations,and resolution of carrier-phaseambiguity. A major advantageof multi-level
modulation codesis that thesecodescanbe decodedin multiple stages with component
codesdecodedsequentiallystageby stage,with decodedinformation passedfrom one stage
to another stage. Sincecomponentcodesare decodedone at a time, it is possibleto take
advantageof the structure of eachcomponentcodeto simplify the decodingcomplexity and
reducethe number of computationsat eachstage. As a result, the overall complexity and
numberof computationsneededfor decodinga multi-level modulation code will be greatly
reduced. This allows us to achievehigh reliability, large coding gain and high spectral
efficiencywith reduceddecodingcomplexity.

2. Multi-Stage Decoding of Multi-Level Modulation Codes

There are four possible types of multi-stage decoding:

(1) Multi-stage Soft-decision Maximum Likelihood Decoding - Each stage of de-

coding is a soft-decision maximum likelihood decoding;

(2) Multi-stage Hard-decision Maximum Likelihood Decoding - Each stage of

decoding is a hard-decision maximum likelihood decoding;

(3) Multi-stage Bounded-distance Decoding - Each decoding stage is a bounded-

distance decoding based on a certain distance measure, e.g., Hamming distance; and

(4) Hybrid Multi-stage Decoding - Mixed types of decoding are used among the stages.

With the multi-stage soft-decision maximum likelihood decoding, each component code

of a multi-level modulation code is chosen to have trellis structure and is decoded with

the soft-decision Viterbi decoding algorithm. Since the decoding at each stage depends on

the decoded information from the previous decoding stages, there is a likelihood of error

propagation. As a result, the overall decoding is not optimum even though the decoding at

each stage is optimum. It is a suboptimum decoding. However, the error propagation effect

can be made negligibly small, if the first few component codes(mostly the first component

code) of a nmlti-level modulation code are powerful. Based on our analysis and simulation

of the error performance of several efficient multi-level modulation codes, we find that the

difference in performance between the suboptimum multi-stage decoding and the single-stage
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optimum decoding is very small, only a fraction of dB loss in SNR at the BER(block or bit

error rate) of 10 -6.

With the multi-stage hard-decision maximum likelihood decoding, each component code

is also chosen to have trellis structure, but is decoded with the hard decision Viterbi decod-

ing algorithm. This type of nmlti-stage decoding further simplifies the decoding complexity,

however there is a 2-2.5 dB loss in SNR compared to the optimum soft-decision decoding.

Even with some loss in SNR, the multi-stage hard-decision maximum likelihood decoding

still achieves significant coding gain over an uncoded system with the same spectral effi-

ciency based on our computations and simulations of error performance of some multi-level

modulation codes.

With the multi-stage bounded distance decoding, component codes of a multi-level mod-

ulation code are decoded with bounded-distance decoding based on either Euclidean or

Hamming distance measure. If a component code is binary, its minimum squared Euclidean

distance is linearly propotional to its minimum Hamming distance. As a result, it can be

decoded based on its minimum Hamming distance. In this case, algebraic or majority-logic

decoding may be used. Results show that if the first-level component code is a low-rate

powerful code and the other component codes are high-rate code, the multi-stage bounded

distance decoding can also achieve significant coding gain over an uncoded system without

any bandwidth expansion and with greatly reduced decoding complexity.

The hybrid multi-stage decoding provides an excellent trade-off between coding gain

and decoding complexity. With this scheme, the lower-level decoding stages (specially the

first-level decoding) are soft-decision maximum likelihood decoding using Viterbi decoding

algorithm and the higher-level decoding stages are hard-decision maximum likelihood or

bounded distance decoding. Based on our computation and simulation of error performance

of some multi-level modulation codes, we find that the hybrid multi-stage decoding has less

than one dB loss in coding gain compared to the optimum decoding.

A very natural architecture for a multi-stage decoder is the pipeline architecture. For

a multi-level modulation code with m component codes, the decoder is organized to decode

m received vectors in pipeline process. While the decoder is decoding the m-th component

vector of the earliest received vector in the pipe, it is also decoding the (m- 1)-th component

vector of the next received vector in the pipe, ..., and the first component vector of the most

recent received vector. This pipeline architecture speeds up the decoding process.

3. Examples

Consider a basic 3-1evel 8-PSI( block modulation code of length 32 with the following

three component codes: (1) C1 is the (32,6) Reed-Muller code with Hamming distance

31 = 16; (2) C2 is the (32, 26) Reed-Muller code with Hamming distance _2 = 4; and (3) C3

is the (32, 31) even parity check code with IIamming distance 53 = 2. This basic 3-level 8-
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PSK modulation code, C = C1 * C2 * Ca, has minimum squared Euclidean distance D[C] = 8

and spectral efficiency r/[C] = 63/32 = 1.966. This code achieves 6 dB asymptotic coding

gain over the uncoded QPSK with optimal decoding. The first component code C1 has a

4-section 16-state trellis, the second component code C2 also has a 4-section 16-state trellis,

and the third component code Ca has a 32-section 2-state trellis. The overall modulation

code 6' = C1 * (72 * Ca has a 512-state trellis. To perform the single-stage optimum decoding

for the overall code, we need to build a soft-decision Viterbi decoder with 512 states which

is quite complex and expensive. However, with the multi-stage soft-decision maximum like-

lihood decoding for this code, we need only two 16-state and one 2-state Viterbi decoders

(a total of 34 states) for the three component codes. The total complexity is much less than

that of a single 512-state Viterbi decoder for optimum decoding. The error performance

of the code is shown in Figure 1. We see that, with multi-stage soft-decision maximum

likelihood decoding, there is almost 5 dB in real coding gain over the uncoded QPSK at

block-error-rate (BER) 10 -6, which is only 1 dB away fi'om the 6 dB asymptotic coding gain.

If optimum decoding is performed, the real coding gain of the code over the uncoded QPSK

is 5.25 dB at BER = 10 -6. We see that there is an excellent trade-off between the error

performance and decoder complexity.

Figure 1 also includes the error performance of the above 3-level 8-PSK modulation code

using 3-stage hard-decision maximum likelihood decoding. We see there is a 2.3 dB loss in

SNR at the BER of 10 -6 compared with the 3-stage soft-decision suboptimum decoding.

Itowever, there is still 2.7 dB coding gain over the uncoded QPSK system with very little

bandwidth expansion. With the 3-stage hard-decision decoding, the decoding complexity is

further reduced.

As a second example, consider a 3-level 8-PSK block modulation code of length 64 with

the following component codes: (1) Ca is the second order (64,22) Reed-Muller code with

minimum I-lamming distance 6_ = 16; (2) C2 is the 4-th order (64,57) Reed-Muller code with

minimum Itamming distance _2 = 4; and (3) Ca is the (64,63) even parity check code with

minimum Hamming distance aa = 2. This 3-level 8-PSK modulation code, C = C1 * C2 * Ca,

has minimum squared Euclidean distance D[C] = 8 and spectral efficiency r/[C] = 142/64 =

2.22. The first component code has a 4-section trellis diagram with 2 'o states, the second

component code has a 4-section trellis diagram with 25 states, and the third component code

has a 2-state trellis diagram. The overall code has a 4-section trellis diagram with 226 states.

Decoding this code with the single-stage soft-decision maximum likelihood decoding using

Viterbi algorithm is prohibitively complex. However, with 3-stage soft-decision maximum

likelihood decoding, this code achieves a 4..5 dB coding gain over the uncoded QPSK system

at the block-error-rate 10 .6 (see Figure 2) with a big reduction in decoding complexity(from

a complexity of 65536 states to a complexity of 1058 states). In fact, this coding gain

is achieved with a bandwidth reduction. With the 3-stage hard-decision bounded distance

decoding, the code also achieves significant coding gain over the uncoded QPSK system with

bandwidth reduction(see Figure 2). There is a 2.2 dB loss in coding gain compared with
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the 3-stage soft-decision maximum likelihood decoding, however the decoding complexity is

greatly reduced. Note that the first component code is majority-logic decodable and the

second component code is simply a distance-4 extended Hamming code which can be easily

decoded. To improve the performance while still keeping the complexity down, we may

use the hybrid multi-stage decoding in which the first component code is decoded with the

hard-decision bounded distance decoding, and the second and third componenet codes are

decoded with the soft-decision maximum likelihood decoding using the Viterbi algorithm.

4. Conclusion

In our examples, we used block modulation codes to demonstrate the effectiveness of the

multi-stage decoding. The multi-stage decoding can be applied to decode the multi-level

trellis modulation codes. This type of decoding for multi-level modulation code really offers

the best of three worlds, spectral efficiency, coding gain(or error performance), and decoding

complexity.
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